Hans-Josef Endres
Andrea Siebert-Raths

Engineering Biopolymers
Markets, Manufacturing, Properties and Applications
Hans-Josef Endres
Andrea Siebert-Raths

Engineering Biopolymers
Markets, Manufacturing, Properties and Applications
The Authors:
Prof. Dr.-Ing. Hans-Josef Endres
Dipl.-Ing. (FH) Andrea Siebert-Raths

University of Applied Sciences and Arts, Faculty of Mechanical Engineering,
Department of Bioprocess Engineering, Heisterbergallee 12, 30453 Hannover, Germany

Distributed in the USA and in Canada by
Hanser Publications
6915 Valley Avenue, Cincinnati, Ohio 45244-3029, USA
Fax: (513) 527-8801
Phone: (513) 527-8977
www.hanserpublications.com

Distributed in all other countries by
Carl Hanser Verlag
Postfach 86 04 20, 81631 München, Germany
Fax: +49 (89) 98 48 09
www.hanser.de

The use of general descriptive names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. While the advice and information in this book are believed to be true and accurate at the date of going to press, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Library of Congress Cataloging-in-Publication Data
Endres, Hans-Josef.
[Technische Biopolymere. English.]
Engineering biopolymers : markets, manufacturing, properties, and applications / Hans-Josef Endres, Andrea Siebert-Raths.
p. cm.
ISBN-13: 978-3-446-42403-6 (hardcover)
1. Biopolymers. I. Siebert-Raths, Andrea. II. Title.
TP248.65.P62E5313 2011
660.63--dc23
2011024059

Bibliografische Information Der Deutschen Bibliothek

ISBN 978-3-446-42403-6

All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying or by any information storage and retrieval system, without permission in writing from the publisher.

© Carl Hanser Verlag, Munich 2011
Translation: Paul Anderson
Production Management: Steffen Jörg
Coverconcept: Marc Müller-Bremer, www.rebranding.de, München
Coverdesign: Stephan Rönigk
Typeset: le-tex publishing services GmbH, Leipzig
Printed and bound by Kösel, Krugzell
Printed in Germany
Preface

The biopolymer group of materials are not an entirely new type of material. Instead they are innovative polymer materials within the well-known class of plastics materials. Thus the very same relationships obtain between their microstructures and macroscopic processing, use and disposal properties as have been known from conventional plastics for a long time.

This book is intended to contribute to our understanding for innovative biopolymers as technical materials. In contrast to most of the book published previously on this topic, biopolymers will be comprehensively presented in the framework of this book from the perspective of materials engineering. With a view to the practical application as polymer materials, the engineering property profiles of the biopolymers will be described in detail by comparing them with conventional plastics. In addition to processing and use properties, the descriptions will include manufacture, chemical structure, microstructure, specific and meanwhile multifarious test standards as well as the corresponding regulatory circumstances and disposal properties of biopolymers within the topical context of sustainability.

In order to simply the interested user's ultimate search for suitable biopolymer materials and to ease contact with materials manufacturers, this book also contains an extensive description of the market in terms of the various commercially available biopolymer materials, their manufacturers and processors.

In the early 1980s, the newly developed biopolymers went through a euphoric phase as the future polymer materials independent of crude oil. However, since the materials properties were still unproven and the price:performance ratio of this first generation of biopolymers was sobering, the euphoria soon cooled off and was followed by the further development and/or optimization of the innovative biopolymer materials. In recent years, what is now the second generation of further developed biopolymers has meanwhile experienced dynamic, annual double-digit growth.

In Europe and America, developmental work and consequently also the use of biopolymer materials have concentrated also exclusively on the field of compostable packaging and other short-live products.

Starting in Asia, and meanwhile in Europe and USA as well, the availability issue for the raw materials used for biopolymers is increasingly supplanting compostability as the priority disposal option. For the third generation, instead of biodegradable materials, biobased and durable materials are being developed for engineering applications outside the field of packaging, too, e.g., for the automotive and textile industries.

There are virtually no data available yet on the long-term properties of biopolymers (e.g. creep resistance, stress relaxation, UV resistance, fatigue behavior, thermal resistance).

Also in terms of industrial processibility and the relevant rheological processing data, the information in the area of biopolymers is sketchy from the perspective of polymer engineering. Since there is a strong competitive attitude among biopolymers manufacturers, till today there are hardly no concerted efforts to collect and provide uniform, comprehensive and comparable materials information in the same place – as is the case for conventional plastics.
Parallel and supplementary to this book, a databank has been developed for biopolymers in cooperation with the M-Base Engineering + Software GmbH in analogy to the internationally known Campus polymer databank for conventional plastics. Since the end of 2009, it presents the properties of innovative, commercially available biopolymers as completely and comparably as possible. Nearly all biopolymers available on the market have been characterized by the authors according to the corresponding test standards. Some results from these investigations are already included in this book in condensed form.

In terms of materials development, biopolymers are still in their early phase. Future materials developments will, as they did with conventional plastics, not only concentrate on new monomers or innovative polymers, but also increasingly on the further development of existing polymers by generative co- and terpolymers, blending and additivizing. To this end, the extensive existing experience in the field of conventional plastics can and should definitely be reverted to.

Hans-Josef Endres, Andrea Siebert-Raths, Hanover, May 2011
Contents

1 Introduction .. 1
 1.1 Defining the Topic .. 1
 1.2 What are Biopolymers? ... 4
 1.2.1 Degradable Petroleum-Based Biopolymers ... 5
 1.2.2 Degradable Bio-Based Biopolymers ... 6
 1.2.3 Non-Degradable Bio-Based Biopolymers ... 6
 1.2.4 Blends and Copolymers from Various Groups of Raw and Manufactured Materials .. 7
 1.3 General Requirements for Biopolymers .. 8
 1.3.1 Disposal of Conventional and Biodegradable Plastics ... 8
 1.3.2 Limitation of Petrochemical Resources .. 12
 1.3.3 Sustainability as a Factor of Corporate Strategy .. 17

2 State of Knowledge ... 19
 2.1 History of Biopolymers .. 19
 2.2 Development of Successive Biopolymer Materials Generations 20
 2.3 Biological Degradability and Compostability .. 22
 2.4 Oxo-Degradability .. 26
 2.5 Resource and Land Requirements for Manufacturing Biopolymers 27
 2.6 Sustainability and Entropic Efficiency of Biopolymers .. 35
 2.7 The Proprietary Situation of Biopolymers ... 41

3 The Regulatory Framework for Biopolymers ... 45
 3.1 Framing for Testing Compostability ... 45
 3.1.1 DIN V 54900 ... 46
 3.1.2 DIN EN 13432 ... 49
 3.1.3 DIN EN 14995 ... 49
 3.1.4 ISO 17088 .. 49
 3.1.5 BNQ-9011–911 .. 49
 3.1.6 ASTM D6400 .. 50
 3.1.7 ASTM D6868 .. 50
 3.1.8 AS 4736 ... 50
 3.1.9 Comparison of Superordinate Standards .. 51
3.2 Test Standards for Execution (Normative References) .. 53
 3.2.1 Guidelines ... 54
 3.2.1.1 ASTM D6002 ... 54
 3.2.1.2 AS 4454 ... 54
 3.2.2 Standards for Packaging (General) ... 54
 3.2.2.1 DIN EN 13193 ... 54
 3.2.2.2 DIN EN 13427 .. 55
 3.2.2.3 DIN EN ISO 472 ... 55
 3.2.2.4 ASTM D883 ... 55
 3.2.3 Aerobic Biodegradation – Aquatic ... 56
 3.2.3.1 DIN EN ISO 10634 .. 56
 3.2.3.2 DIN EN ISO 14851 .. 56
 3.2.3.3 DIN EN ISO 14852 .. 56
 3.2.3.4 ISO 9408 .. 57
 3.2.4 Aerobic Biodegradation – Terrestrial ... 57
 3.2.4.1 Composting .. 57
 3.2.4.1.1 DIN EN ISO 14855 ... 57
 3.2.4.1.2 ASTM D5338 ... 57
 3.2.4.2 Disintegration ... 58
 3.2.4.2.1 DIN EN 14045 ... 58
 3.2.4.2.2 DIN EN 14046 ... 58
 3.2.4.2.3 DIN EN 14806 ... 58
 3.2.4.2.4 ISO 16929 ... 58
 3.2.4.2.5 DIN EN ISO 20200 ... 59
 3.2.4.3 Soil (DIN EN ISO 17556) .. 59
 3.2.5 Anaerobic Biodegradability ... 59
 3.2.5.1 DIN EN ISO 11734 ... 59
 3.2.5.2 ISO 14853 ... 59
 3.2.5.3 ISO 15985 ... 60
 3.2.6 ASTM D6866 (*C Method) .. 60
 3.2.7 OECD Guidelines ... 61
 3.2.8 Japanese Standards ... 62
 3.2.8.1 JIS K 6950 ... 62
 3.2.8.2 JIS K 6951 ... 62
 3.2.8.3 JIS K 6952 ... 63
 3.2.8.4 JIS K 6953 ... 63
 3.2.8.5 JIS K 6954 ... 63
 3.2.8.6 JIS K 6955 ... 63
 3.2.9 VDI 4427 .. 63
4 Manufacture and Chemical Structure of Biopolymers

4.1 Manufacturing of Biopolymers

4.1.1 Chemical Synthesis of Petrochemical Raw Materials

4.1.1.1 Polyvinyl Alcohol (PVAL, PVA or PVOH)

4.1.1.2 Polyvinyl Butyral (PVB)

4.1.1.3 Polycaprolactone (PCL)

4.1.1.4 Others

4.1.2 Chemical Synthesis of Bio-Based Feedstock

4.1.2.1 Polylactide (PLA)

4.1.2.2 Bio-, Co-, and Terpolyester

4.1.2.3 (Bio-)Polyurethanes (Bio-PUR)

4.1.2.4 (Bio-)Polyamides (Bio-PA)

4.1.2.5 Drop-in Solutions

4.1.3 Direct Biosynthesis of Biopolymers

4.1.4 Modification of Renewable Feedstocks

4.1.4.1 Starch Polymers

4.1.4.2 Cellulose Polymers

4.1.4.3 Lignin

4.1.4.4 Vegetable Oil-Based Biopolymers

4.1.4.5 Chitin, Chitosan

4.1.4.6 Casein Plastics (CS or CSF)

4.1.4.7 Gelatins

4.1.5 Blends

4.2 Chemical Structure of Biopolymers

4.2.1 Polymethylenes

4.2.1.1 (Bio-)Polyethylene (Bio-PE)

4.2.1.2 Polyvinyl (Polyvinyl Alcohol)

4.2.1.3 Polyvinyl Acetals (Polyvinyl Butyral)

4.2.2 Polyethers (Polyglycols)

4.2.3 Polysaccharide Polymers

4.2.3.1 Cellulose Regenerates (CH)

4.2.3.2 Cellulose Ethers (MC, EC, HPC, CMC, BC)

4.2.3.3 Cellulose Esters (CA, CP, CB, CN, CAB, CAP)

4.2.3.4 Denatured Thermoplastic Starch (TPS)

4.2.3.5 Starch Acetate
4.2.4 (Bio-)Polyester ... 137
 4.2.4.1 Polylactide (PLA) .. 137
 4.2.4.2 Polyhydroxybutyrate (PHB) 137
 4.2.4.3 Polyhydroxyvalerate (PHV) 137
 4.2.4.4 Polyhydroxyhexanoate (PHH) 138
 4.2.4.5 Polyhydroxyoctanoate (PHO) 138
 4.2.4.6 Polycaprolactone (PCL) 138
 4.2.4.7 Polyglycolic Acids (PGA) 138
 4.2.4.8 PLA Copolymers ... 138
 4.2.4.9 PHA Copolymers and PHA Blends 139
 4.2.4.10 Polybutylene Succinate (PBS) 141
 4.2.4.11 Polybutylene Succinate Adipate (PBSA) 141
 4.2.4.12 Polytrimethylene Terephthalate (PTT) 142
 4.2.4.13 Polybutylene Terephthalate (PBT) 142
 4.2.4.14 Polybutylene Adipate Terephthalate (PBAT) 142
 4.2.4.15 Polybutylene Succinate Terephthalate (PBST) 143
 4.2.4.16 Ester-Ether-Copolymers 143

4.2.5 (Bio-)Polyamides (Bio-PA) 143
 4.2.5.1 Homopolyamides .. 144
 4.2.5.2 Copolyamides ... 145
 4.2.5.3 Polyester Amides (PEA) 146

4.2.6 (Bio-)Polyurethane (Bio-PUR) 147

4.2.7 Protein-Based Polymers 147

4.2.8 Polyvinyl Pyrrolidones (PVP) 148

5 Engineering Property Profiles of Biopolymers 149
 5.1 Property Profiles of the Most Important Biopolymers 150
 5.1.1 Polyvinyl Alcohols (PVA, PVAL, PVOH) 150
 5.1.2 Polycaprolactone (PCL) 156
 5.1.3 Polyhydroxyalkanoates (PHA) 157
 5.1.4 Polylactic Acid (PLA) 161
 5.1.5 PLA Blends and PLA Copolymers 166
 5.1.6 Bio-Copolyesters and Copolyester Blends 168
 5.1.7 Starch / Starch Blends / Thermoplastic Starch (TPS) 169
 5.1.8 Cellulose Regenerates (CH) 171
 5.1.9 Cellulose Derivates (CA, CP, CB, CN, CAB, CAP) 173
 5.1.10 Bio-PE, Bio-PA, Bio-PUR 176
5.2 Properties in Comparison with Conventional Plastics 177
 5.2.1 Biopolymer Materials for Injection Molding Applications 177
 5.2.1.1 Mechanical Data .. 178
 5.2.1.2 Thermo-Mechanical Properties 182
 5.2.1.3 Processing Properties 186
 5.2.1.4 Economic Aspects .. 193
 5.2.1.5 Specific Pricing Information 195
 5.2.2 Materials for Biopolymer Film 200
 5.2.2.1 Approval for Direct Contact with Food 200
 5.2.2.2 Certification of Compostability 203
 5.2.2.3 Barrier Properties .. 209
 5.2.2.4 Physical-Chemical Properties 213
 5.2.2.5 Mechanical Characteristics of Films 213
 5.2.2.6 Processing Properties of Biopolymer Films 217
 5.2.2.7 Economic Aspects of Film Manufacturing 220
 5.2.3 Conclusions for Future Applications 222

6 End-of-Life Options for Biopolymers .. 225
 6.1 Landfill .. 225
 6.2 Recycling ... 226
 6.2.1 Thermo-Mechanical Recycling 226
 6.2.2 Chemical Recycling ... 228
 6.3 Composting .. 228
 6.3.1 Industrial Composting .. 229
 6.3.2 Domestic Composting ... 230
 6.4 Incineration .. 231
 6.4.1 Calorific Value of Biopolymers 232
 6.4.2 Emissions Created by the Incineration of Biopolymers 234
 6.5 Anaerobic Digestion (Biogas Generation) 238
 6.6 Product-Specific Disposal .. 242
 6.6.1 Solution/Degradation in Water 242
 6.6.2 Decomposition/Degradation in Soil 242
 6.6.3 Decomposition/Degradation in the Organism
 (Consumption, Biodegradation) 243
 6.7 Littering .. 243
7 Life-Cycle Assessment for Biopolymers ... 245
 7.1 Methods of Life-Cycle Assessment (LCA) 245
 7.1.1 Defining the Goal and Scope of Testing 247
 7.1.2 Preparing an Life-Cycle Inventory 248
 7.1.3 Estimating Effects and Impacts 249
 7.1.4 Analyzing the Results .. 252
 7.2 Data for the Life-Cycle Assessment of Biopolymers 253

8 Market Characterization for Biopolymers .. 261
 8.1 Current Availability and Future Capacities 261
 8.2 The Current Price Situation ... 267
 8.3 Biopolymer Manufacturers and Material Types 268
 8.3.1 Absorbable Polymer Technologies 282
 8.3.2 Acetati SpA ... 282
 8.3.3 Agrana Stärke GmbH ... 282
 8.3.4 Agro-Industrie Recherches et Développements (ARD) 282
 8.3.5 Akro-Plastic GmbH ... 283
 8.3.6 Albis Plastics GmbH .. 283
 8.3.7 Anqing Hexion Chemical Co., Ltd. 284
 8.3.8 API SpA ... 284
 8.3.9 Archer Daniels Midland Company (ADM) 285
 8.3.10 Arkema SA ... 285
 8.3.11 Ashland Inc. .. 286
 8.3.12 BASF SE .. 286
 8.3.13 Bayer AG .. 287
 8.3.14 Bioamber .. 288
 8.3.15 Biobased Chem Co. Ltd. ... 288
 8.3.16 BioBased Technologies LLC 289
 8.3.17 Biocycle .. 289
 8.3.18 BioMatera Inc. .. 290
 8.3.19 Biome Bioplastics Ltd. .. 290
 8.3.20 Biomer .. 291
 8.3.21 Bio-Natural Technology Co., Ltd. 292
 8.3.22 Bio-On Srl .. 292
 8.3.23 Biop Biopolymer Technologies AG 293
 8.3.24 Biopearls B.V. .. 294
 8.3.25 Biostarch Ltd. ... 294
 8.3.26 Biotor Industries Ltd. .. 295
<p>| 8.3.27 | Biotec GmbH & Co. KG | 295 |
| 8.3.28 | Birmingham Polymers | 296 |
| 8.3.29 | Braskem S.A. | 296 |
| 8.3.30 | Cardia Bioplastics (Biograde Ltd.) | 297 |
| 8.3.31 | Cargill Dow LLC | 298 |
| 8.3.32 | Cargill Inc. | 299 |
| 8.3.33 | Chang Chun Plastics Co., Ltd. | 300 |
| 8.3.34 | Celanese Corp. | 300 |
| 8.3.35 | Cereplast Inc. | 301 |
| 8.3.36 | Cerestech Inc. | 302 |
| 8.3.37 | Chengu Dikang Biomedical Co., Ltd. | 303 |
| 8.3.38 | Chinese Academy of Science, Changchun Institute of Applied Chemistry (CIAC) | 303 |
| 8.3.39 | Chronopol Inc. | 303 |
| 8.3.40 | Corn Products International Inc. | 304 |
| 8.3.41 | Croda International Plc. | 304 |
| 8.3.42 | Crystalsev Ltda. | 304 |
| 8.3.43 | CSM N.V. | 305 |
| 8.3.44 | Daicel Chemicals Industries Ltd. | 305 |
| 8.3.45 | Dainippon Ink and Chemicals | 306 |
| 8.3.46 | DaniMer Scientific | 306 |
| 8.3.47 | DIC Corporation | 306 |
| 8.3.48 | DNP Green Technology Inc. | 307 |
| 8.3.49 | The Dow Chemical Company | 307 |
| 8.3.50 | DSM N.V. | 308 |
| 8.3.51 | DuPont | 309 |
| 8.3.52 | DuPont Tate & Lyle Bio Products LLC | 312 |
| 8.3.53 | Durect Corporation | 313 |
| 8.3.54 | Eastman Chemical Company | 313 |
| 8.3.55 | Elastogran GmbH | 314 |
| 8.3.56 | EMS Chemie GmbH | 314 |
| 8.3.57 | Evonik Industries AG | 315 |
| 8.3.58 | Fasal Wood KEG | 316 |
| 8.3.59 | FKuR Kunststoff GmbH | 317 |
| 8.3.60 | Fujitsu Ltd. | 319 |
| 8.3.61 | Futerro | 320 |
| 8.3.62 | FuturaMat | 321 |
| 8.3.63 | Galactic | 321 |
| 8.3.64 | German Bioplastics Merzenich & Strauß GmbH | 321 |
| 8.3.65 | Grace Biotech Corporation | 322 |
| 8.3.66 | Guangzhou Bright China Biotechnological Co., Ltd. | 322 |
| 8.3.67 | Harbin Livan Biodegradable Product Co., Ltd. | 322 |
| 8.3.68 | Harbin Weilida Pharmaceuticals Co., Ltd. | 323 |
| 8.3.69 | Henan Piaoan Group Company Ltd. | 323 |
| 8.3.70 | Heritage Plastics, Inc. | 323 |
| 8.3.71 | Hisun Biomaterials Co., Ltd. | 324 |
| 8.3.72 | Hobum Oleochemicals GmbH | 324 |
| 8.3.73 | ICO Polymers Inc. | 325 |
| 8.3.74 | IFA-Tulln | 325 |
| 8.3.75 | IFS Chemicals Ltd. | 326 |
| 8.3.76 | IGV Institut für Getreideverarbeitung GmbH | 326 |
| 8.3.77 | Innovia Films Ltd. | 327 |
| 8.3.78 | IRE Chemicals Ltd. | 327 |
| 8.3.79 | Jamplast Inc. | 328 |
| 8.3.80 | Japan Corn Starch Co., Ltd. | 328 |
| 8.3.81 | Japan Vam & Poval Co., Ltd. | 329 |
| 8.3.82 | JER Envirotech | 330 |
| 8.3.83 | Kaneka Corporation | 330 |
| 8.3.84 | Kareline OY Ltd. | 331 |
| 8.3.85 | Kingfa Sci. & Tech. Co., Ltd. | 331 |
| 8.3.86 | Kuraray Co., Ltd. | 332 |
| 8.3.87 | Lati Industria Termolastici SpA | 333 |
| 8.3.88 | Limagrain Céréales Ingrédients | 334 |
| 8.3.89 | Mazda Motor Corporation | 334 |
| 8.3.90 | Mazzucchelli 1849 SpA | 335 |
| 8.3.91 | Meredian Inc. | 335 |
| 8.3.92 | Merquinsa S.A. | 336 |
| 8.3.93 | Metabolix | 337 |
| 8.3.94 | Metzeler Schaum GmbH | 337 |
| 8.3.95 | Mitsubishi Chemical Holdings Corporation | 338 |
| 8.3.96 | Mitsubishi Gas Chemical Company Inc. (MGC) | 338 |
| 8.3.97 | Mitsui Chemicals Inc. | 339 |
| 8.3.98 | Nantong Jiuding Biological Engineering Co., Ltd. | 340 |
| 8.3.99 | NatureWorks LLC | 340 |
| 8.3.100 | NEC Corporation | 342 |
| 8.3.101 | Nihon Shokuhin Kako Co., Ltd. | 342 |</p>
<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.3.102 Novamont SpA.</td>
</tr>
<tr>
<td>8.3.103 Novomer Inc.</td>
</tr>
<tr>
<td>8.3.104 Novozymes A/S</td>
</tr>
<tr>
<td>8.3.105 PE Design & Engineering B.V.</td>
</tr>
<tr>
<td>8.3.106 Perstorp UK Ltd.</td>
</tr>
<tr>
<td>8.3.107 Peter Holland B.V.</td>
</tr>
<tr>
<td>8.3.108 PHB Industrial Brasil S.A.</td>
</tr>
<tr>
<td>8.3.109 Plantic Technologies Ltd.</td>
</tr>
<tr>
<td>8.3.110 Polyfca</td>
</tr>
<tr>
<td>8.3.111 Polykemi AB</td>
</tr>
<tr>
<td>8.3.112 PolyOne</td>
</tr>
<tr>
<td>8.3.113 Polymer Technology Group</td>
</tr>
<tr>
<td>8.3.114 Polysciences Inc.</td>
</tr>
<tr>
<td>8.3.115 Procter & Gamble Chemicals</td>
</tr>
<tr>
<td>8.3.116 PSM (HK) Co., Ltd.</td>
</tr>
<tr>
<td>8.3.117 Purac</td>
</tr>
<tr>
<td>8.3.118 Pyramid Bioplastics Guben GmbH</td>
</tr>
<tr>
<td>8.3.119 Rhodia</td>
</tr>
<tr>
<td>8.3.120 Rodenburg Biopolymers B.V.</td>
</tr>
<tr>
<td>8.3.121 Roquette</td>
</tr>
<tr>
<td>8.3.122 Rotuba</td>
</tr>
<tr>
<td>8.3.123 RTP Company</td>
</tr>
<tr>
<td>8.3.124 Shanghai Tong-Jie-Liang Biomaterials Co., Ltd.</td>
</tr>
<tr>
<td>8.3.125 Shimadzu Corporation</td>
</tr>
<tr>
<td>8.3.126 Showa Highpolymer Co., Ltd.</td>
</tr>
<tr>
<td>8.3.127 SK Chemicals</td>
</tr>
<tr>
<td>8.3.128 Solvay S.A.</td>
</tr>
<tr>
<td>8.3.129 Sphere Group</td>
</tr>
<tr>
<td>8.3.130 Stanelco Group</td>
</tr>
<tr>
<td>8.3.131 Starch Tech Inc.</td>
</tr>
<tr>
<td>8.3.132 Stepah N.V.</td>
</tr>
<tr>
<td>8.3.133 Suzhou Hipro Polymers</td>
</tr>
<tr>
<td>8.3.134 Sulzer Chemtech AG</td>
</tr>
<tr>
<td>8.3.135 Synbra Technology B.V.</td>
</tr>
<tr>
<td>8.3.136 Tate & Lyle PLC</td>
</tr>
<tr>
<td>8.3.137 Tecnaro GmbH</td>
</tr>
<tr>
<td>8.3.138 Teijin Limited</td>
</tr>
<tr>
<td>8.3.139 Teknor Apex</td>
</tr>
</tbody>
</table>
8.3.140 Telles ... 366
8.3.141 Tianan Biologic Material Co., Ltd. 366
8.3.142 Tianjin Green BioScience Co., Ltd. 367
8.3.143 Toray Industries .. 368
8.3.144 Total Petrochemicals ... 368
8.3.145 Toyobo Vylon .. 369
8.3.146 Toyota .. 369
8.3.147 Union Carbide Corporation 370
8.3.148 Unitika Ltd. ... 370
8.3.149 Urethane Soy Systems Company 370
8.3.150 Vegeplast SAS .. 371
8.3.151 Vertellus Specialties Inc. 372
8.3.152 VTT Technical Research Centre of Finland 372
8.3.153 Wacker Chemie AG ... 372
8.3.154 Wuhan Huali Environment Protection Science & Technology Co., Ltd. ... 373
8.3.155 Zhejiang Hangzhou Xinfu Pharmaceutical Co., Ltd. 373
8.3.156 Zhejiang Hisun Biomaterials Co., Ltd. 374
8.4 Biopolymer Processors/Converters 374

Appendix .. 383
A Manufacturers, Trade Names, and Material Data Sheets 383

References .. 655

Index .. 667

Authors .. 675
1 Introduction

1.1 Defining the Topic

The concept of biopolymers has become a buzzword. It is increasingly heard in the media, in politics, industry, in research and development in particular, and at numerous meetings of experts. While it has become a bit hackneyed, it has yet to be precisely defined (Fig. 1.1). That is why we should start out by differentiating the topic and by defining what we mean by biopolymers.

By contrast with green biotechnology (agriculture) and red (pharmaceutical) biotechnology, the notion of a “white biotechnology” is still rather new. Even though humanity has used it for millennia, e.g., for fermenting alcohol and lactic acid, this term still is not widely applied. White biotechnology stands for the industrial production or modification of basic organic or fine chemicals and active agents or biogenic energy sources using optimized species of microorganisms, enzymes, or cells [1]. However, this definition covers only parts of the biopolymeric whole, i.e., only the biotechnological production of polymer raw materials or additives for bio-based biopolymers. Conversely, the biotechnological production of chemicals can be covered here only insofar as these materials serve to produce biopolymers. Purely biotechnologically generated molecular materials, such as exopolysaccharides, xanthane, gellan gum, cordulan, alginate, hyaluronic acid, oligosaccharides, or various acids and vitamins, are not engineering biopolymers.

The concepts of biopolymers and white biotechnology coincide in the large group of biopolymers that are based on biotechnologically manufactured monomers or polymer raw materials such as lactic acid, bio-alcohols, or polyhydroxyalkanoates (Fig. 1.2). Biomolecules, such as the large group of polyamino acids, occur in living beings and natural organic substances are of course not engineering materials. Therefore, we do not regard these biogenic macromolecules as biopolymeric materials. One exception to this are biomolecules that can be biotechnologically further metabolized into raw materials for manufacturing
polymers. Other exceptions include polysaccharides as well as some bio-based acids (such as lactic acid or succinic acid), or vegetable oils that can be used directly as raw materials for biopolymers.

Currently, conventional wood-flour filled or natural fiber-reinforced polyolefins, such as polyethylene or polypropylene, are also often included in the concept of biopolymers [2–7], see Fig. 1.3.

However, we believe that this usage blurs the concept of biopolymers. For one, it is impossible to provide quantitative data on their minimum content of bio-based components. Thus it is quite possible to speak of a PP with only 10% natural fiber as a biopolymer. That is why this book does not include so-called WPCs (= Wood Plastic Composites) or (NFCs = Natural Fiber Reinforced Composites), that is, conventional polymers filled with wood-flour or natural fibers, respectively. On the other hand, if they have a biopolymer matrix, wood-flour filled or natural fiber-reinforced polymers will be covered here (Fig. 1.4).

![Figure 1.2](image1.png) Where white biotechnology and biopolymers coincide

![Figure 1.3](image2.png) Biopolymers and natural fiber-reinforced or wood-flour filled plastics
The term ‘bio-compatible’ generally designates materials that neither interact with nor have any negative effect on organisms they are in contact with. However, such materials are not necessarily biopolymers, e.g., medical thread or polylactide-based implants. Similarly, bioinert materials can also be bio-compatible, because their interaction with human tissue is minimal, e.g., ceramic and titanium-based implants or siloxanes, as well as special plastics (e.g., certain PEEK, PET, or PE-UHMW types) [8–10]. In fact, there is a certain overlapping of the concepts of biopolymers and bio-compatibility among bio-absorbable or bioactive polymers, which are also bio-compatible plastics. However, these concepts are far from congruent, because a large number of materials can be assigned to just one of these two areas or concepts (Fig. 1.5).

Traditional materials, such as wood or rubber, which can be classified as biopolymers according to this definition, are not treated in this context. Such materials are not innovative thermoplastic biomaterials and to include them would go beyond the scope of this book. As with conventional, petrochemical-based plastics, there are thermoplastic, elastomeric, and even thermosetting polymer materials among these various biopolymer groups, as shown in Fig. 1.6.

![Figure 1.4](image1.png)
Figure 1.4 Natural fiber-reinforced biopolymer (in this illustration: wood fibers in a polylactide matrix)

![Figure 1.5](image2.png)
Figure 1.5 Intersection of biocompatible materials and biopolymers